Crystal and Molecular Structure of Tetramethylformamidinium Phosphonic Anhydride, [(Me₂N)₂CPO₂]₂O

By F. Sanz and J. J. Daly,* Monsanto Research S.A., Eggbühlstrasse 36, CH 8050 Zürich, Switzerland

Crystals of the title compound are monoclinic, space group C2/c with a = 11.170, b = 10.613, c = 14.077 Å. β = 103° 24', Z = 4. Diffractometer data for 2092 planes were used to solve the structure by direct methods and were refined by least-squares to a final R of 0.065 (for 2092 planes). The molecule possesses a two-fold crystallo-graphic symmetry axis passing through the central oxygen atom. Important bond lengths are P–O(terminal) 1.469(2), P–O(bridge)1.619(2), P–C1.880(2), N–C(*sp*²)1.331(3), N–C(*sp*³)1.463(4) Å; P–O–P is 125.9(1)°

TETRAMETHYLFORMAMIDINIUM phosphonic anhydride (I) may be synthesised from tetramethylformamidinium chloride and triethyl phosphite.¹ It has several features of structural interest; for example it contains a P-C bond which links two groups of opposite formal charge, it is a double inner salt, and it is an organophosphorus compound with a P-O-P linkage of the type found in pyrophosphates. Structural analyses of the parent acid (II)² and the related phosphonoformate ion (III)³ have already been published. Formulae equivalent to (I) may also be written so that one would expect bond lengths to fall into groups, N-C(sp^2), N-C(sp^3), P-O-(terminal), P-O(bridge), and P-C.

EXPERIMENTAL

Crystal Data.— $C_{10}H_{24}N_4O_5P_2$, M = 342.3, Monoclinic, $a = 11.170(9), \quad b = 10.613(8), \quad c = 14.077(13)$ Å, $\beta =$ $103^{\circ} 24(10)', U = 1623 \cdot 4 \text{ Å}^3, Z = 4, D_c = 1400.$ Mo- K_{α} radiation, $\lambda = 0.71069$ Å; μ (Mo- K_{α}) = 298 m⁻¹, space group, from extinctions and successful analysis, C2/c.

Cell dimensions were obtained from precession photographs by a least-squares process. Intensities were collected round the b axis of a triclinic unit cell which is related to the monoclinic cell by the matrix $(a_t, b_t, c_t) = (-\frac{1}{2}, -\frac{1}{2}, 0)$ $|\frac{1}{2}, -\frac{1}{2}, 0|0, 0, 1\rangle$ $(a_{\rm m}, b_{\rm m}, c_{\rm m})$. These intensities were reduced to a set of $|F_0|$, indexed in the monoclinic system, and averaged to give 2092 independent measurements.

Structure Determination and Refinement.—The positions of the heavy atoms were found from an E-map after an application of direct methods.⁴ The signs of the E values were obtained by hand from a computer listing of the triple product relations. This trial structure was refined by least squares, first with isotropic, then with anisotropic temperature factors. When R was 0.10 a difference-Fourier map was calculated which showed the positions of the hydrogen atoms and refinement was continued with all atoms until R, for 2092 planes, was 0.065 and $R' (= \Sigma w \Delta^2 / \Sigma w F_0^2$), for 2018 planes, was 0.008. Planes with $3|F_c| \leq$ $|F_{o}|$ were omitted from the least-squares totals and from R'. The weights ⁵ were given by $w^{-1} = 3.91 + |F_0| + 0.016 F_0^2$, a block-diagonal process was used with 3×3 matrices for positional parameters and 1×1 or 6×6 matrices for the thermal parameters.

RESULTS AND DISCUSSION

The final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20465 (14 pp., 1 microfiche).[†] Table 1 shows an analysis of

TABLE 1
Average values of $\Sigma \omega \Delta^2$ as a function of the magnitude
of $ F_{\lambda} $ and of $(2 \sin \theta/\lambda)^2$

01 17	o and of $(2 \sin 0/\lambda)^2$	
Range of $ F_0 $	$\Sigma \omega \Delta^2/n$	n *
01.0	0.03	3
$1 \cdot 0 - 2 \cdot 0$	0.01	14
$2 \cdot 0 - 4 \cdot 0$	0.02	334
4.0-8.0	0.01	511
8.0-16.0	0.01	568
16.0 - 32.0	0.01	355
32.0 - 64.0	0.01	185
$64 \cdot 0 - 128 \cdot 0$	0.02	43
$128 \cdot 0 - 256 \cdot 0$	0.01	7
$(2 \sin \theta / \lambda)^2$ Interval		
0-0.128	0.01	36
0.128 - 0.256	0.01	70
0.256-0.384	0.01	96
0.384 - 0.512	0.02	109
0.512 - 0.640	0.01	118
0.640 - 0.768	0.01	134
0.768-0.896	0.01	141
0.896 - 1.024	0.01	144
1.024 - 1.152	$0.0\overline{1}$	150
1.152 - 1.280	0.01	161
1.408 - 1.536	0.01	165
1.536 - 1.664	0.01	155
1.664 - 1.792	0.01	162
1.792 - 1.920	0.01	124
1.920 - 2.048	0.03	101
2.048 - 2.176	0.03	71
2.176 - 2.304	0.04	50
$2 \cdot 304 - 2 \cdot 432$	0.03	27
$2 \cdot 432 - 2 \cdot 560$	0.04	4
* /	n = No. of planes.	

⁴ D. Sayre, Acta Cryst., 1952, 5, 60; W. Cochran, ibid., p. 65; W. H. Zachariasen, *ibid.*, p. 68; H. Hauptman and J. Karle, 'Solution of the Phase Problem, I; The Centrosymmetric

[†] For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue 20.

¹ G. H. Birum, J. Org. Chem., in the press.

 ² J. J. Daly, J.C.S. Dalton, 1972, 1048.
 ³ R. R. Naqvi, P. J. Wheatley, and E. Foresti-Serantoni, J. Chem. Soc. (A), 1971, 2751.

 ⁵ D. W. J. Cruickshank, D. E. Pilling, A. Bujosa, F. M. Lovell, and M. R. Truter, 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis,' Pergamon Press, Oxford, 1961, p. 32.

these data as a function of the monoclinic k index and of the magnitude of $|F_0|$. Tables 2-4 give the coordinates, the thermal parameters, and the bond lengths and angles. Standard deviations are given in parentheses as units in the last significant figure. The Figure shows

TABLE 2

	Final atomic co-ordin	nates, X , Y , and	d Z (A)
	X	Y	Z
P(1)	0.1341(5)	1.8466(5)	4.9859(5)
O(2)	0.2623(19)	$2 \cdot 8957(19)$	6.0390(18)
O(3)	-0.9046(18)	0.7873(19)	4.8419(20)
N(I)	2·1605(20)	-0.1104(18)	$5 \cdot 8357(20)$
N(2)	2 ·9387(20)	1.8236(18)	5.0433(21)
CÌÌ	1.9033(21)	1.0991(20)	$5 \cdot 2761(21)$
C(2)	1.1577(30)	-1.2069(25)	5.6231(32)
C(3)	3.4303(31)	-0.4526(28)	6.8313(28)
C(4)	2·8949(29)	$3 \cdot 2762(25)$	4.8567(32)
C(5)	4 ·1876(28)	$1 \cdot 2227(32)$	4.7903(35)
O(l)	0·0000(0)	2.5831(20)	3·5193(0)
H(2A) 1.63(4)	-1.99(3)	5.44(4)
H(2B	0.41(4)	-1.00(3)	4.92(4)
H(2C)	0.86(4)	-1.47(4)	6.42(3)
H(3A	3.99(3)	0.36(3)	7.12(3)
HÌ3B	3.96(4)	-1.09(3)	6.41(4)
H(3C)	3.07(3)	-0.87(3)	7·61 (3)
HÌ4A) 2·06(3)	3·63(2)	$5 \cdot 12(3)$
HÌ4B	ý 3 ∙61(4)	3·59(3)	5·46(4)
H(4C)	2.89(5)	3.51(3)	3·99(̀5)́
H(5A	4.03(3)	0.25(3)	4.52(3)
HÌ5B	$4 \cdot 35(4)$	1·56(3)	4 ·01(5)
H(5C)	5.07(3)	1.28(4)	5·65(5)

TABLE 3

(a) Anisotropic temperature factors *

				$2 \times$	2 imes	2~ imes
	$10^{4}U_{11}$	$10^{4}U_{22}$	$10^4 U_{33}$	$10^4 U_{12}$	$10^4 U_{23}$	$10^4 U_{13}$
P(1)	391(2)	452(3)	381(3)	-000(4)	-010(4)	272(4)
O(2)	595(10)	687(10)	463(9)	144(17)	-271(15)	388(15)
O(3)	464(8)	647(10)	620(10)	-220(15)	201(16)	280(15)
N(1)	505(9)	404(8)	453(9)	068(15)	048(13)	260(14)
N(2)	422(8)	467(9)	471(10)	-068(14)	-056(13)	257(14)
C(1)	429(9)	408(8)	371(9)	-056(15)	-086(13)	243(14)
C(2)	691(16)	453(11)	695(16)	-130(22)	130(21)	449(26)
C(3)	687(16)	574(13)	534(14)	358(24)	103(20)	077(22)
C(4)	557(13)	471(11)	711(16)	-191(20)	005(20)	397(24)
C(5)	520(13)	712(16)	831(20)	-028(25)	-206(28)	696(27)
O(l)	466(10)	409(9)	390(10)	000(0)	000(0)	201(16)
• •	* In the f	form exp	$-2\pi^{2}(h^{2}a)$	$*^{2}U_{11} + k^{2}U_{21}$	$*^{2}U_{22} + l^{2}$	$c^{*2}U_{33} +$

 $2hka^*b^*U_{12} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13}$).

(b) Isotropic temperature factors for hydrogen atoms

$10^{4}U$	iso	$10^4 U_{ m iso}$	
H(2A)	613	H(4A) 580	
H(2B)	613	H(4B) 580	
H(2C)	613	H(4C) = 580	
H(3A)	598	H(5A) 688	
H(3B)	598	H(5B) 688	
H(3C)	598	H(5C) 688	

the molecule projected down b and the labelling of the atoms.

The analysis shows that the [(Me₂N)₂CPO₂]₂O molecule (I) has a crystallographic two-fold symmetry axis which passes through the bridging oxygen atom. The asymmetric unit of (I) is structurally very similar to the parent acid (II)² as may be seen from a comparison of the molecular parameters; e.g. some mean bond lengths are (values for the anhydride given first) P-O(terminal) 1.469, 1.486; P-O(-X) 1.619, 1.561; N-C(sp^2) 1.331, 1.330; N-C(sp^3) 1.463, 1.467; and P-C 1.880, 1.890 Å. A long bond between a four-co-ordinate phosphorus atom and an sp^2 hybridised carbon atom (1.827Å) has also

TABLE	4
-------	---

Dand	longthe	1 % \	and	a marles	101	
Bond	lengths	(A)	and	angles	(-)	

(a) Distances			
P-O(1)	1.619(1)	N-C(sp^3)	
P-O(2)	1.471(2)		
P-O(3)	1.467(2)	$N(1)-C(2) = 1 \cdot 4$	168(4)
P-C(1)	1.880(2)	N(1)-C(3) = 1.4	461(4)
		N(2)-C(4) = 1.4	463(4)
$N-C(sp^2)$		$N(2) - C(5) = 1 \cdot 4$	160(4)
C(1) - N(1)	1.333/3)	Mean 1.4	463
C(1) = N(2)	1.328(3)		_
(I) N(2)	1 020(0)	C-H (mean) 0.9	97
Mean	1.331		
(b) Angles			
P'-O(1)-P	$125 \cdot 87(8)$	Angles at N(1)	
()	()	C(1) - N(1) - C(2)	123.94(20)
Angles at P		C(1) - N(1) - C(3)	123.47(20)
0P0		C(2) - N(1) - C(3)	112.36(20)
O(1) - O - O(2)	$107 \cdot 49(9)$	Mean angle at N(1) 119·92
O(1) - P - O(3)	109.35(9)	8	
O(2) - P - O(3)	121.84(11)	Angles at N(2)	
0-P-C		C(1) - N(2) - C(4)	124.09(20)
O(1) - P - C(1)	101.43(8)	C(1) - N(2) - C(5)	$122 \cdot 61(21)$
O(2) - P - C(1)	$101 \cdot 10(0)$ $104 \cdot 49(10)$	C(4) - N(2) - C(5)	$112 \cdot 98(21)$
O(3) - P - C(1)	110.34(10)	Mean angle at N(2)) 119 ·89
Mean angle at	P 109-16	Mean H-C-N	J 110
-		Mean H–C–H	F 109
Angles at C(1)			
P-C(1)-N(1)	120.59(16)		
P-C(1)-N(2)	120.01(16)		
N(1)-C(1)-N(2)	$2) 119 \cdot 11(19)$		

The molecule as viewed down the b axis and the labelling of the atoms

been found in the (PO₃CO₂)³⁻ ion.³ The usual observed value,³ a mean of 118 measurements, is 1.804 Å. The P-O(bridge) bond length (1.619 Å) is considerably longer, as expected,⁶ than the P-O(terminal) bonds (1.469 Å); the latter are quite short being comparable with the P-O bond (1.46 Å) in Ph₃PO.⁷ The P-O-P angle is $125 \cdot 9^{\circ}$ and is less than the angles found in the bent pyrophosphate ion in Na₄P₂O₇,10H₂O (130°),⁸ α -Mg₂P₂O₇ (144°),⁹ and α -Cu₂P₂O₇ (157°);¹⁰ similar P-O-P angles are found in the adamantane-type molecules P_4O_{10} (123.5°) ¹¹ and in $P_4O_6S_4$ (124.5°).¹²

the observed bond lengths and angles, a $C \cdots C$ contact of 2.5 Å and so non-bonded repulsions between methyl groups force the NMe₂ groups to rotate about the C(1)-N bonds until the angles between planes (B) and (C)reaches 48°. This angle is still insufficient to give a normal contact $(3\cdot 4 \text{ Å})$ between C(3) and C(5) which are only 2.87 Å apart. Further rotation of the N(1)Me₂ group about C(1)-N(1) would also increase the short

TABLE	5
-------	---

				and have made	as andimates
Some least-soluties	Dianes in	ine molecille	referred to	ortnogonal	co-oronates
	promos in	the morecule	10101104 00	or thogonar	co orannacco

Plane l		l m		Þ	Atoms	Max dev.	
(A)	-0.0122	0.3757	0.9267	5.1974	P(1), C(1), N(1), N(2)	C(1)	-0.037
(B)	-0.5677	0.3156	0.7603	$3 \cdot 8505$	C(1) - (3), N(1)	N(1)	-0.028
(C)	0.1896	0.0860	0.9781	5.2583	C(1), $N(2)$, $C(4)$, $C(5)$	N(2)	0.033

Within the PC(NMe₂)₂ group three planes, each containing four atoms (maximum deviation 0.04 Å), may be distinguished and their equations are given in Table 5. These are the planes of the sp^2 hybridised C(1), N(1), and N(2) atoms and they might be expected to be coplanar giving optimum π -overlap between C(1) and the two nitrogen atoms. Examples of planarity of this type are to be found in urea ¹³ and, at least to less than 0.1 Å, in thiourea.¹⁴ However this planar conformation of the heavy atoms in the PC(NMe2)2 group would give, with

⁶ D. W. J. Cruickshank, J. Chem. Soc., 1961, 5486. ⁷ G. Bandoli, G. Bortolozzo, D. A. Clemente, U. Croatto, and C. Panattoni, J. Chem. Soc. (A), 1970, 2778. ⁸ W. S. McDonald and D. W. J. Cruickshank, Acta Cryst.,

1967, 22, 43.

C. Calvo, Acta Cryst., 1967, 23, 289.

¹⁰ B. E. Robertson and C. Calvo, Acta Cryst., 1967, 22, 665.
 ¹¹ B. Beagley, D. W. J. Cruickshank, T. G. Hewitt, and A. Haaland, Trans. Faraday Soc., 1967, 63, 836.
 ¹² F. C. Mijlhoff, J. Portheine, and C. Romers, Rec. Trav. chim., 1007, 69, 257

1967, 86, 257.

observed contact of 2.85 Å between C(2) and O(3). These short contacts suggest that there are forces favouring planarity which are not quite overcome by non-bonded intramolecular repulsions.

The van der Waals' contacts exhibit no unusual features.

We thank Dr. Gail Birum of the Monsanto Company for the crystals.

[2/935 Received 27th April, 1972]

¹³ P. A. Vaughan and J. Donohue, Acta Cryst., 1952, 5, 530; E. R. Andrew and D. Hyndman, Discuss. Faraday Soc., 1955, 19, 1955;
R. A. Kromhout and W. G. Moulton, J. Chem. Phys., 1955, 23, 1673;
J. E. Worsham, H. A. Levy, and S. W. Peterson, Acta Cryst., 1957, 10, 319;
N. Sklar, M. E. Senko, and B. Post, *ibid.*, 1961, 14, 716;
A. N. Lobacher and B. K. Vainstein, Kristal-conduct and B. 205; lografiya, 1961, 6, 395; A. Caron and J. Donohue, Acta Cryst., 1969, B25, 404.

¹⁴ V. F. Dvoryankin and B. K. Vainstein, *Kristallografiya*, 1961, 6, 949; M. R. Truter, *Acta Cryst.*, 1967, 22, 556; M. M. Elcombe and J. C. Taylor, *ibid.*, 1968, A24, 410.